1.	(a)	resisto	ors in series add to 20 Ω and current is 0.60 A	
			accept potential divider stated or formula	B1
		so p.d	l. across XY is $0.60 \times 12 (= 7.2 \text{ V})$	
			gives (12 /20) × 12 V (= 7.2)V	B1
	(b)	(i)	the resistance of the LDR decreases	M1
			(so total resistance in circuit decreases) and current increases	A1
		(ii)	resistance of <u>LDR and 12 Ω</u> (in parallel)/ <u>across XY</u> decreases	B1
			so has smaller share of supply p.d. (and p.d. across XY falls)	
			alternative I increases so p.d. across 8.0 Ω increases; so p.d. across XY falls	
				B 1

2. (a) (i)
$$I = V/R = 8.0/200$$

 $I = 0.040$ (A)

		C1 A1
(ii)	V = 24 - 8 = 16 (V)	B1

(iii)
$$R = 16/0.04$$
 giving $R = 400 (\Omega)$

accept ratio of p.d.s to ratio of Rs ecf from (i) & (ii) ie (a)(ii)/(a)(i)

		C1
(iv)	$P = VI = I^2 R = V^2/R$	AI

P = 0.640 (W)

ecf from **(i)** & **(ii)** accept 640 mW [6]

C1 A1

(b)	(i)	the thermistor has heated up/ its temperature has increased so its resistance has dropped so the ratio of the voltages across the potential divider changes/AW		
		accept so the current increases accept so IR of fixed resistor increases		
			B1 M1 A1	
	(ii)	voltages are equal so resistances are equal	B1	
(c)	(i)	straight line through origin labelled R passing through 0.06,12		
		allow correct lines with no labels	B1 B1	
	(ii)	upward curve below straight line through origin labelled T passing through 0.06,12		
			B1 B1	[15]

3.	Any	<u>four</u> from:	B1 × 4
	1.	(As temperature increases) the resistance of the thermistor / T d	lecreases
	2.	The total resistance decreases	(Possible ecf)
	3.	The current increases (in the circuit)	(Possible ecf)
	4.	The (voltmeter) reading increases / voltage across R increases	(Possible ecf)
	5.	The voltage across the thermistor / T decreases	(Possible ecf)
	6.	Correct use of the potential divider equation / comment on the of voltage / correct use of $V = IR$	sharing'

4.	(a)	$\mathbf{E} = \mathbf{I}$	I(R + r)	D1
	(b)	(i)	1 0.80 Ω	DI
	(-)	(-)		B1
			2 6.4 V	B1
		(ii)	(sum of) e.m.f.s = sum /total of p.d.s/sum of voltages (in a loop)	
		(;;;;)	6.4 - 0.801	B1
		(111)	I = 8.0 A	
			can be 2 ecf from (b)(i), eg 21.6/0.8	
			= 2 / A (1 ecf) or 21.8 / 0.08 = 31.8 A (2 ecf)	C1
				A1

(c) (i) $Q = It = 2.5 \times 6 \times 60 \times 60$

[4]

	= 54000 (C)		
	allow 1 mark if forgets one or two 60's giving 900 C or 15 C	C1 A1	
(ii)	energy = $QE = 54000 \times 14$ = 756000 (J)		
	allow (use of 12 V gives) 648000 J for 1 mark	C1 A1	
(iii)	energy loss = $I2Rt = VIt = 2 \times 2.5 \times 6.0 \times 60 \times 60 = 108000 J$ percentage = $(108000/756000) \times 100 = 14\%$		
	accept $Q\Delta V = 54000 \times 2.0 = 108000 J$ accept $Q\Delta V/QE = 2.0/14.0 = 14\%$ not $756000/54000 = 14\%$		
		C1 A1	[12]

5. (a) resistance = p.d./current

accept voltage instead of p.d.; ratio of voltage to current; voltage per (unit) current not R = V/I or p.d. = current x resistance or p.d. per amp or answer in units or voltage over current

(ii) R = V/I = 6/0.25= 24 (Ω)

ecf (b)(i) 240 V gives 960 Ω
award $0.024 \ \Omega \ 1$ mark only (POT error)

C1 A1

B1

B1

(c) (i) 6 V supply with potential divider 'input' across it and lamp across p.d. 'output' ammeter in series with lamp voltmeter across lamp

accept 0 – 6 V variable supply with lamp across it not variable R in series with supply circuit with no battery present can only score voltmeter mark

> B1 B1

B1

6.

7.

	(ii)	non-zero intercept line indicating increasing value of R with current		
		curve must reach y-axis accept straight line or upward curve	B1 B1	
	(iii)	resistivity/resistance of filament wire increases with temperature the temperature of the lamp increases with current/voltage increase more frequent electron-ion/atom collisions/AW increased ion vibrations		
		accept any two of the four statements accept AW, e.g the lamp heats up because of the current		
			B1 B1	
(d)	(i)	lamps do not light		
		ignore reasons unless too contrary	B1	
		remaining lamps are lit with qualification qualification could be more dimly or sensible explanation		
	(ii)	using resistors in parallel formula to obtain a value of R per unit R per unit = 19.4 Ω or R total = 774 Ω I = 6/19.4 or 240/774 = 0.31 A	B1	
		eg takes R of bulb = 10Ω giving R per unit = 9.1Ω gains first mark only ecf (b)(i)(ii) accept R of resistors = 4000Ω ; current in chain = $0.06 A$; total current = $0.06 + 0.25 = 0.31 A$ 0.3 A is SF error so gains 2 marks only		
		apply S F error only once in paper	C1 C1 A1	[16]
				[10]
(Sum energ	n of) e. gy is co	m.f.s = sum /total of p.d.s/sum of voltages (in a loop) onserved	B1 B1	[2]
(a)	(Sem	niconductor) diode	B1	
(b)	The	diode symbol circled (No ecf allowed)	B1	

(c)
$$R = \frac{V}{I}$$
 C1

At 0.20 V, R = infinite / very large A1
At 0.70 V,
$$R = (\frac{0.70}{0.020} =)35(\Omega)$$
 (Allow answers in the range:

(d) p.d across diode = 0.75 (V) /
$$(R_t = \frac{4.5}{0.060} =)75(\Omega)$$
 C1

p.d across resistor = 4.5 - 0.75 = 3.75 (V) / $(R_d = \frac{0.75}{0.060} =)12.5(\Omega)$ C1

$$R = \left(\frac{3.75}{0.060} = 62.5 \approx\right) 63(\Omega) \qquad / R = (75 - 12.5 = 62.5 \approx) 63(\Omega) \qquad A1$$

(Use of 0.70 V across the diode gives $R = 63.3\Omega$ - This can score 2/3)

(e)Straight line through the origin
Line of correct gradient (with line passing through 0.63 V, 0.01 A)
[Possible ecf]M1
A1

[10]